Publication Date: 
May 2017

The transport of water and sediment from rivers to adjacent floodplains helps generate complex floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectivity of water and sediment during flood pulses, making the re-introduction of floodplain hydrogeomorphic processes through intentional levee breaching and removal an emerging floodplain restoration practice. Repeated topographic observations from levee breach sites along the lower Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion in near-bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches opening into excavated floodplain channels promoted both transverse advection and turbulent diffusion of sediment into the floodplain channel, facilitating near-bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains. Advective sediment transport along multiple flow paths generated overlapping crevasse splays, while turbulent diffusion promoted the formation of lateral levees through large wood and sediment accumulation in near-bank areas. Channel incision (>2 m) upstream from a wide levee breach suggests that large flow diversions through such breaches can generate water surface drawdown during flooding, resulting in localized flow acceleration and upstream channel incision. Understanding variable hydrogeomorphic responses to levee breach architecture will help restoration managers design breaches that maximize desired floodplain topographic change while also minimizing potential undesirable consequences such as levee breach closure or channel incision.